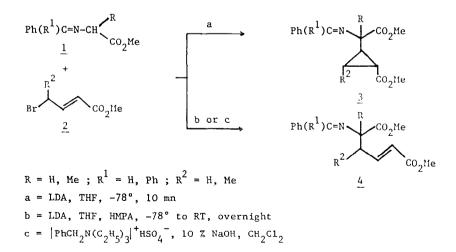
REACTION OF SCHIFF BASES ANIONS WITH 4-HALO-2-BUTENOATES :

SELECTIVE SYNTHESIS OF α -CYCLOPROPYL

AND γ , δ UNSATURATED α -AMINO ACID DERIVATIVES.

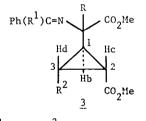

M. JOUCLA*, M. EL GOUMZILI and B. FOUCHET

Groupe de Recherche de Physicochimie Structurale 3, Unité Associée au C.N.R.S. n° 704, Campus de Beaulieu, 35042 Rennes Cedex, France.

Depending on the reaction conditions, anions of imines derived from α -aminoesters react with 4-bromo - 2-butenoates to give either cyclopropyl derivatives by an addition-elimination or γ, δ -unsaturated iminoesters by a nucleophilic substitution.

In a previous paper we have described the formation of 1-aza $(2\cdot1\cdot0)$ -bicyclopentanes from the addition reactions of imine anions to methyl 2-bromoacrylates⁽¹⁾. We now report the behaviour of such imine anions 1 with 4-bromo - 2-butenoates 2.

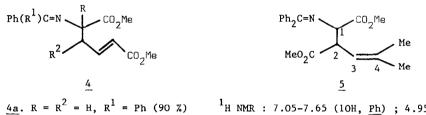
When the reaction was performed at -78° with LDA in THF, <u>1</u> and <u>2</u> reacted to give rise to cyclopropanes <u>3</u> in good yields. Addition of HMPA to the mixture gave specific substitution products leading to γ , δ -unsaturated imino derivatives <u>4</u> as it was observed under PTC condition reactions⁽²⁾.


Cyclopropane ring formation by anionic Michael addition reactions to alkenes such as $\frac{2}{(4)}$ was previously reported⁽³⁾ and applied mainly in the area of pyrethroids⁽⁴⁾

To our knowledge, the reaction of imine anions with alkenes 2 has not been described and represents an easy and direct way for α -cyclopropyl α -aminoacids synthesis.

Thus, equimolecular amounts of LDA and <u>la</u> (R = H; $R^1 = Ph$) in THF reacted quantitatively with <u>2a</u> ($R^2 = H$) after 10 min. at -78°C. Hydrolysis at low temperature followed by usual work-up led to <u>3a</u> ($R = R^2 = H$; $R^1 = Ph$), (F = 90°C, Ether-Hexane ; yields : 85 %).

 $\frac{3a}{1} H - NMR (Bruker AM 300 WB) : 7.10-7.70 (10H ; Ph) ; 3.87 d (1H, Ha, J_{ab} = 6.1 Hz) ; 3.72 and 3.67 s (6H, <math>CO_2Me$) ; 2.09 m (1H, Hb, J_{ab} = 6.1 Hz ; J_{bc} = 6.3 Hz (trans) ; J_{cd} = 4.2 Hz (tr.) J_{bd}, = 8.7 Hz (cis)) ; 1.76 m (1H, Hd, J_{bd} = 4.2 Hz (tr.) ; J_{cd} = 8.4 Hz (tr.) ; J_{dd}, = 5 Hz) ; 1.19 m (1H, Hd', J_{bd}, = 8.7 Hz (tr.) ; J_{cd}, = 4.4 Hz (tr.) ; J_{dd}, = 5 Hz) ; 0.87 m (1H, Hc, J_{bc} = 6.3 Hz (tr.) ; J_{cd} = 8.4 Hz (c) ; J_{cd}, = 4.4 Hz (tr.)). Mass spectrometry (Varian MAT 311) : m/e = 351, M¹⁺ : C₂₁H₂₁NO₄ (calculated 351.1471 ; found 351.1482).


The following compounds were obtained :

<u>3a</u>. R = Ha, $R^1 = Ph$, $R^2 = Hd'$; (mp = 90°C, Ether/Hexane, 85 %). <u>3b</u>. R = Ha, $R^1 = H$, $R^2 = Hd'$; (Bp_{0.03} = 170°C, 67 %). <u>3c</u>. R = Me, $R^1 = H$, $R^2 = Hd'$; (Bp_{0.03} = 195°C, 70 %). <u>3d</u>. R = Ha, $R^1 = Ph$, $R^1 = Me$; (mp = 87°C, Ether/Hexane, 78 %). <u>3e</u>. $R = R^2 = Me$, $R^1 = H$; (Bp_{0.025} = 130°C, 71 %).

Stereochemistry on the cyclopropane ring was assigned from NMR data, based on the coupling constants values $(J_{cis} > J_{trans}; J_{cis} : 8-10 \text{ Hz}; J_{tr} : 4-6 \text{ Hz})^{(5)}$. For all these derivatives iminogroup at C_1 and ester group at C_2 are in a trans relationship. Methyl at C_3 is cis related to the ester group at C, (<u>3d</u>, <u>3e</u>).

When compounds 1 and 2 were reacted with LDA in THF, HMPA (-78°C to rt) for 14 hours or by PTC at room temperature (2,7), Y.S-unsaturated imino derivatives 4 were recovered in good yields. Spectroscopic data are in good agreement with the proposed structures.

(92 %).

¹H NMR : 7.05-7.65 (10H, Ph) ; 4.95 dq (1H,

 4a. R = R R = R R = R R = R R = R $R = R^2 = H$ (88 %) H_3 , $J_{23} = 10 \text{ Hz}$; $J_{3-Me} = 1.4 \text{ Hz}$); 4.55 d

 4c. R = Ph, $R^1 = R^2 = H$ (88 %) H_3 , $J_{23} = 10 \text{ Hz}$; $J_{3-Me} = 1.4 \text{ Hz}$); 4.55 d

 4d. R = H, $R^1 = Ph$, $R^2 = Me$ $R = J_{23} = 10 \text{ Hz}$; 3.70 and 3.60 s

 6d. R = H, $R^1 = Ph$, $R^2 = Me$ $R = J_{23} = 10 \text{ Hz}$; 3.70 and 3.60 s
 CO_2Me ; 1.68 and 1.72 d (6H, Me, ${}^4J_{3-Me}$ = 1.4 Hz).

Methyl 4-bromo-4-methyl-2-pentenoate and anion of imine la (R = H, R^1 = Ph) either with LDA, THF, HMPA or with PTC gave rise to the unsaturated compound 5, which resulted formally from SN_2 ' substitution disfavored in this case by the ester $group^{(8)}$.

We are at this time investigating other aminoacids synthesis by the reaction of iminoester anions with other haloalkenes derivatives.

- 1. B. Fouchet, M. Joucla and J. Hamelin, Tetrahedron Lett., 1981, 3397.
- 2. R.D. Allan, J. Chem. Res. (S), 1980, 392, (M), 1980, 4658.
- 3. P. Kolsaker and H.J. Storesund, J. Chem. Soc. Chem. Comm., 1972, 375.
- 4. S. Torii, H. Tanaka and Y. Nagai, Bull. Chem. Soc. Jpn, 1977, 50, 2825.
- 5. A.J. Gordon and R.A. Ford, in "The Chemist's Companion", J. Wiley and Sons, Ed., 1972, p. 274.
- 6. I. Wagner and H. Musso, Angew. Chem. Internat. Ed., 1983, 22, 816.
- 7. M.J. O'Donnell, J.M. Boniece and S.E. Earp, Tetrahedron Lett., 1978, 2641.
- 8. Electrophilic centers were expected at the sp³ carbon bonded to the halide and at the sp² carbon β related to the ester group.

(Received in France 30 January 1986)